Medium
There is an integer array nums sorted in ascending order (with distinct values).
Prior to being passed to your function, nums is possibly rotated at an unknown pivot index k (1 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2].
Given the array nums after the possible rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums.
You must write an algorithm with O(log n) runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Example 3:
Input: nums = [1], target = 0
Output: -1
Constraints:
1 <= nums.length <= 5000-104 <= nums[i] <= 104nums are unique.nums is an ascending array that is possibly rotated.-104 <= target <= 104#include <stdio.h>
int search(int* nums, int numsSize, int target) {
    int lo = 0;
    int hi = numsSize - 1;
    int mid;
    while (lo <= hi) {
        mid = ((hi - lo) >> 1) + lo;
        if (nums[mid] == target) {
            return mid;
        }
        // Check if the left half is sorted
        if (nums[lo] <= nums[mid]) {
            // Target is in the left half
            if (nums[lo] <= target && target <= nums[mid]) {
                hi = mid - 1;
            } else { // Target is in the right half
                lo = mid + 1;
            }
        }
        // Otherwise, the right half is sorted
        else {
            // Target is in the right half
            if (nums[mid] <= target && target <= nums[hi]) {
                lo = mid + 1;
            } else { // Target is in the left half
                hi = mid - 1;
            }
        }
    }
    return -1;
}